
Open Crypto Audit Project
TrueCrypt
Cryptographic Review

Prepared for:

Prepared by:

Alex Balducci

Sean Devlin

Tom Ritter

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 2 of 21

©2015, NCC Group, Inc.

Prepared by NCC Group, Inc. for Open Crypto Audit Project. Portions of this document and the templates used

in its production are the property of NCC Group, Inc. and can not be copied without permission.

While precautions have been taken in the preparation of this document, NCC Group, Inc, the publisher, and the

author(s) assume no responsibility for errors, omissions, or for damages resulting from the use of the information

contained herein. Use of NCC Group services does not guarantee the security of a system, or that computer

intrusions will not occur.

March 13, 2015 Open Crypto Audit Project Version 1.0

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 3 of 21

Table of Contents

1 Executive Summary . 4

1.1 CS Risk Summary . 5

1.2 Project Summary . 6

1.3 Findings Summary . 7

1.4 Recommendations Summary . 7

2 Engagement Structure . 8

2.1 Internal and External Teams . 8

2.2 Project Goals and Scope . 9

3 Detailed Findings . 10

3.1 Classifications . 10

3.2 Vulnerabilities . 12

3.3 Detailed Vulnerability List . 13

Appendices . 17

A Random Number Generator . 17

B Follow-up Review . 18

B.1 XTS Pointer Arithmetic . 18

B.2 Header Volume Parameters . 18

B.3 Program Flow . 18

C XTS Mode of Disk Encryption . 19

D Defensive Coding . 20

March 13, 2015 Open Crypto Audit Project Version 1.0

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 4 of 21

1 Executive Summary

Application Summary

Application Name TrueCrypt

Application Version 7.1a

Application Type Disk encryption software

Platform Windows, C / C++

Engagement Summary

Engineers Engaged Three (3)

Engagement Type Cryptographic Review

Testing Methodology Source Code Review

Vulnerability Summary

Total High severity issues 2

Total Medium severity issues 0

Total Low severity issues 1

Total Undetermined severity issues 1

Total vulnerabilities identified: 4

See section 3.1 on page 10 for descriptions of these classifications.

Category Breakdown:

Access Controls 0

Auditing and Logging 0

Authentication 0

Configuration 0

Cryptography 4 ����

Data Exposure 0

Data Validation 0

Denial of Service 0

Error Reporting 0

Patching 0

Session Management 0

Timing 0

March 13, 2015 Open Crypto Audit Project Version 1.0

H
ig

h

Attack Sophistication

B
u

s
in

e
s

s
 R

is
k

L
o
w

Simple Difficult

©2008 iSEC Partners, Inc.

• CryptAcquireContext may silently fail in unusual scenarios

• Unauthenticated ciphertext in volume headers

• Keyfile mixing is not cryptographically sound

• AES Implementation susceptible to cache timing attacks

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 5 of 21

1.1 CS Risk Summary

The Cryptography Services Risk Summary chart evaluates vulnerabilities according to business risk.

The impact of the vulnerability increases towards the bottom of the chart. The sophistication required

for an attacker to find and exploit the flaw decreases towards the left of the chart. The closer a

vulnerability is to the chart origin, the greater the business risk.

March 13, 2015 Open Crypto Audit Project Version 1.0

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 6 of 21

1.2 Project Summary

The Open Crypto Audit Project engaged Cryptography Services (CS) to perform a scoped engagement

on portions of TrueCrypt's cryptographic implementations and use. This review was narrowly scoped

to specific aspects of the application, and was time-boxed to an engagement length that was deemed

sufficient to give adequate coverage of the components in place.

CS reviewed TrueCrypt 7.1a using source code review as well as sample applications and targeted

debugging on the Windows platform to verify assumptions about API behavior. Reverse engineer-

ing to perform assembly code analysis or comparison to provided sources was not conducted. The

specific scope outlining which components were included and excluded from the review can be found

in section 2.2 on page 9.

While the time-boxed nature of the engagement prevented auditors from reviewing the source code in

its entirety, the most relevant areas were investigated thoroughly. The assorted AES implementations

in both parallel and nonparallel XTS configurations were a particular point of focus. Testers looked

for implementation errors that could leak plaintext or secret key material or allow an attacker to use

malformed inputs to subvert the TrueCrypt software. Additionally, the random number generator

implementation and usage were reviewed for errors that could lead to predictable outputs used in

secret keys. The SHA-512 hash function, concomitant key derivation functions, and integration of

keyfiles were checked for similar problems.

The header volume format and protection schemes were evaluated for design and implementation

flaws that could allow an attacker to recover data, execute malicious code, or otherwise compromise

the security of the system. The cipher cascades were reviewed, and noted to behave in the most con-

servative manner possible (that is, applying the entire block cipher mode successively). The unusual

legacy mode that cascades two ciphers with different block sizes was noted, but did not appear to have

flaws.

Because of the difficulty in protecting against such a threat and the limited time, CS did not attempt

to enumerate locations where memory was insecurely wiped. The effect of different disk sector sizes

was also outside the scope of the review, but should be carefully examined to ensure the program

behaves correctly in unusual sector sizes. Areas of concern that CS feels are worth particular additional

attention are listed in Appendix B on page 18.

In addition, as part of the engagement, CS reviewed the existing efforts in CipherShed and Veracrypt at

auditing and improving the TrueCrypt codebase. These efforts were designed to augment the review

of TrueCrypt and were not an audit of these applications. Issues identified and remediated in these

projects1 are not noted here.

1Such as https://stackoverflow.com/questions/22122509/truecrypt-bug-in-serpent

March 13, 2015 Open Crypto Audit Project Version 1.0

https://stackoverflow.com/questions/22122509/truecrypt-bug-in-serpent

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 7 of 21

1.3 Findings Summary

During the engagement, CS identified four (4) issues, and none led to a complete bypass of confiden-

tiality in common usage scenarios. The standard workflow of creating a volume and making use of it

was reviewed, and no significant flaws were found that would impact it.

The most severe finding relates to the use of theWindows API to generate random numbers for master

encryption key material among other things. While CS believes these calls will succeed in all normal

scenarios, at least one unusual scenario would cause the calls to fail and rely on poor sources of entropy;

it is unclear in what additional situations they may fail.

Additionally, CS identified that volume header decryption relies on improper integrity checks to detect

tampering, and that the method of mixing the entropy of keyfiles was not cryptographically sound.

Finally, CS identified several included AES implementations that may be vulnerable to cache-timing

attacks. The most straightforward way to exploit this would be using native code, potentially delivered

through NaCl in Chrome; however, the simplest method of exploitation through that attack vector was

recently closed off.2

1.4 Recommendations Summary

In addition to the short- and long-term recommendations covered in each individual issue in sec-

tion 3.2 on page 13, CS also recommends the following to any project working with the TrueCrypt

codebase:

Continue code review and improvement. The existing projects have helped uncover flaws in various

portions of the codebase that have not been carefully studied. CS hopes this work continues, and

suggests some attention be paid to the areas outlined in Appendix B on page 18.

Simplify the application logic. The multitude of formats, ciphers, and cascades supported increase

the complexity of the application, and make it more difficult to verify. While hardware-optimized

implementations are extremely beneficial and a reasonable exception to including redundant code,

remove options such as cascades in future versions to reduce the opportunity for invalid program state.

Perform more aggressive error handling and logging. Because TrueCrypt aims to be security-

critical software, it is not appropriate to fail silently or attempt to continue execution in unusual

program states. More than simply aborting the application, attempt to gather relevant diagnostic

information and make it available for submission to developers to diagnose root-causes. This is espe-

cially important as it is difficult to fully test code on multiple operating systems and configurations.

2Specifically, removing access to the CLFUSH instruction as part of the Rowhammer mitigation.

March 13, 2015 Open Crypto Audit Project Version 1.0

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 8 of 21

2 Engagement Structure

2.1 Internal and External Teams

The Cryptography Services team has the following primary members:

• Alex Balducci — Security Engineer

• Sean Devlin — Security Engineer

• Tom Ritter — Security Engineer & Account Contact

The Open Crypto Audit Project team has the following primary members:

• Matthew Green — Open Crypto Audit Project Contact

• Kenneth White — Open Crypto Audit Project Contact

March 13, 2015 Open Crypto Audit Project Version 1.0

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 9 of 21

2.2 Project Goals and Scope

The goal of this engagement was to review the cryptography used in TrueCrypt for errors that could

lead to an attacker recovering plaintext from an inert container or achieving code execution during

volume parsing. The specific areas of the code covered were:

• EncryptDataUnits & DecryptDataUnits and resulting function calls

• EncryptBuffer and DecryptBuffer

• Key Derivation (derive_key_* from EncryptionThreadProc)

• ReadVolumeHeader

• The cascade constructions and AES in XTS Mode

The assessment explicitly excluded the following areas to limit the scope of the engagement:

• Hidden Volumes

• In-place disk encryption process

• Deprecated Disk Modes: LRW, Inner CBC, Outer CBC

• Lesser-Used Algorithms: Serpent, Twofish, Cast, 3DES, Blowfish

• Other areas of the application

March 13, 2015 Open Crypto Audit Project Version 1.0

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 10 of 21

3 Detailed Findings

3.1 Classifications

The following section describes the classes, severities, and exploitation difficulty rating assigned to

each issue that CS identified.

Vulnerability Classes

Class Description

Access Controls Related to authorization of users, and assessment of rights

Auditing and Logging Related to auditing of actions, or logging of problems

Authentication Related to the identification of users

Configuration Related to security configurations of servers, devices, or software

Cryptography Related to mathematical protections for data

Data Exposure Related to unintended exposure of sensitive information

Data Validation Related to improper reliance on the structure or values of data

Denial of Service Related to causing system failure

Error Reporting Related to the reporting of error conditions in a secure fashion

Patching Related to keeping software up to date

Session Management Related to the identification of authenticated users

Timing Related to the race conditions, locking, or order of operations

Severity Categories

Severity Description

Informational
The issue does not pose an immediate risk, but is relevant to secu-

rity best practices or Defense in Depth

Undetermined The extent of the risk was not determined during this engagement

Low
The risk is relatively small, or is not a risk the customer has indicated

is important

Medium

Individual user's information is at risk, exploitation would be bad

for client's reputation, of moderate financial impact, possible legal

implications for client

High
Large numbers of users, very bad for client's reputation or serious

legal implications.

March 13, 2015 Open Crypto Audit Project Version 1.0

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 11 of 21

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploit was not determined during this engagement

Low
Commonly exploited, public tools exist or can be scripted that ex-

ploit this flaw

Medium
Attackers must write an exploit, or need an in depth knowledge of

a complex system

High

The attacker must have privileged insider access to the system, may

need to know extremely complex technical details or must discover

other weaknesses in order to exploit this issue

March 13, 2015 Open Crypto Audit Project Version 1.0

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 12 of 21

3.2 Vulnerabilities

The following table is a summary of vulnerabilities identified by CS. Subsequent pages of this report

detail each of the vulnerabilities, along with short and long term remediation advice.

Vulnerability Class Severity

1. CryptAcquireContextmay silently fail in unusual

scenarios
Cryptography High

2. AES implementation susceptible to cache-timing

attacks
Cryptography High

3. Keyfile mixing is not cryptographically sound Cryptography Low

4. Unauthenticated ciphertext in volume headers Cryptography Undetermined

March 13, 2015 Open Crypto Audit Project Version 1.0

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 13 of 21

3.3 Detailed Vulnerability List

1. CryptAcquireContextmay silently fail in unusual scenarios

Class: Cryptography Severity: High Difficulty: Undetermined

FINDING ID: CS-TC-1

TARGETS: CryptAcquireContext calls in Random.c

DESCRIPTION: The parameters passed to CryptAcquireContextmay cause it to fail in certain obscure

situations. TrueCrypt calls CryptAcquireContext in the following manner:

if (!CryptAcquireContext (&hCryptProv, NULL, NULL, PROV_RSA_FULL, 0)

&& !CryptAcquireContext (&hCryptProv, NULL, NULL, PROV_RSA_FULL, CRYPT_NEWKEYSET))

CryptoAPIAvailable = FALSE;

else

CryptoAPIAvailable = TRUE;

Listing 1: Calls to CryptAcquireContext

Testing on Windows XP indicates that if this is the first time a user has issued a call with the NULL

container (parameter 2), the first call to CryptAcquireContext will fail, while the second, initializing

a new KeySet, will succeed. A later version of Windows tested appears to succeed on the first call, but

this was not thoroughly tested.

While disturbing, this issue should not cause failure on common Windows XP uses. However, this

is not the correct method of calling CryptAcquireContext and it may cause failure on uncommon

Windows configurations (spanning XP through Windows 8.1).

CryptAcquireContext acquires a context to a user's key container to store keys in; however, TrueCrypt

does not use it for that purpose – rather it uses it exclusively for generating randomnumbers. In certain

circumstances (such as Mandatory Profiles3) a key container cannot be initialized and the call will fail.

Even though TrueCrypt does not need to store keys, it will be unable to generate random numbers.

To address the situation where an application does not need to persist keys, the CRYPT_VERIFYCONTEX

T flag is available and should be used. When present, CryptAcquireContextwill not attempt to access

a user's key container, and therefore will not fail if it could not do so.

This problem is exacerbated by the fact that the application does not fail if it cannot acquire a handle to

a Cryptographic Service Provider – it will simply continue without strong randomness, and use other

poor values of randomness such as Process ID and various pointers. More detail about the RNG in the

absence of calls to CryptGenRandom is covered in Appendix A on page 17.

EXPLOIT SCENARIO: A user creates a TrueCrypt Volume on a company-managed machine. Because

of the Group Policy Settings in place at the organization, TrueCrypt is unable to open a handle to a

Cryptographic Service Provider, and falls back to insecure sources of randomness, potentially enabling

brute-force attacks on the master key.

Recommendation: Pass the CRYPT_VERIFYCONTEXT flag to CryptAcquireContext rather than at-

tempting to create a new keyset. If CryptAcquireContext or CryptGenRandom fail, raise an error and

do not allow the user to continue. Record the error details, and encourage the user to submit the

information to developers of support forums to allow diagnosing the failure.

3https://groups.google.com/forum/#!searchin/microsoft.public.platformsdk.security/

CryptAcquireContext/microsoft.public.platformsdk.security/4dJc5eVeywA/qAaUy2xWNy8J

March 13, 2015 Open Crypto Audit Project Version 1.0

https://groups.google.com/forum/#!searchin/microsoft.public.platformsdk.security/CryptAcquireContext/microsoft.public.platformsdk.security/4dJc5eVeywA/qAaUy2xWNy8J
https://groups.google.com/forum/#!searchin/microsoft.public.platformsdk.security/CryptAcquireContext/microsoft.public.platformsdk.security/4dJc5eVeywA/qAaUy2xWNy8J

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 14 of 21

2. AES implementation susceptible to cache-timing attacks

Class: Cryptography Severity: High Difficulty: High

FINDING ID: CS-TC-2

TARGETS: The AES implementations in AesSmall.c, AesSmall_x86.asm, Aes_x86.asm, Aes_x64.asm

DESCRIPTION: Naive optimizations of AES depends heavily on large look-up tables. The indices into

these tables depend both on attacker-supplied plaintext as well as secret key material. Because the

tables are so large, they do not comfortably fit inside the data cache of some CPUs. By choosing inputs

carefully, an attacker can induce variable timing dependent on secret key material. By measuring

these timings and making statistical inferences, they can recover secret keys completely. For more

information, see Cache-timing attacks on AES by Daniel J. Bernstein4 and Efficient Cache Attacks on

AES, and Countermeasures by Eran Tromer et al.5

TrueCrypt providesmultiple implementations of AES.Many of these depend on look-up tables, includ-

ing those in AesSmall.c, AesSmall_x86.asm, Aes_x86.asm, and Aes_x64.asm. The C implementation

by Brian Gladman in AesSmall.c is known to be vulnerable to cache-timing attacks.6, 7

Also provided is an assembler implementation using the Intel AES-NI hardware instructions. Imple-

mentations using these instructions do not rely on the data cache and are not vulnerable to cache-

timing instructions. This is supported by several research papers.8, 9

The AES-NI implementation is preferred on platforms where the requisite instructions are available.

EXPLOIT SCENARIO: An attacker may be able to extract AES keys used to protect encrypted volumes.

A successful exploit may rely on the attacker's ability to execute native code on the victim's machine,

but recent advances in cache attacks performed by untrusted JavaScript10 indicate this area is being

researched more heavily.

Recommendation: Writing high-performance, constant-time, portable software implementations of

AES is a difficult undertaking. A non-portable Intel 64-bit implementation of AES-CTR by Käsper is

available.11 Besides this implementation, it is possible to partially mitigate the vulnerability to cache-

timing side channels. Some strategies include:

• Oblivious table look-ups that scan the entire look-up table, selecting the value desired on the

way through.

• Implementing compressed tables to protect the outer two rounds only. While it is still possible

to attack the inner rounds, the attack complexity grows considerably.

4http://cr.yp.to/papers.html#cachetiming
5http://www.tau.ac.il/~tromer/papers/cache-joc-20090619.pdf
6http://cr.yp.to/mac/variability1.html
7http://www.metzdowd.com/pipermail/cryptography/2005-June/008946.html
8Are AES x86 Cache Timing Attacks Still Feasible?, Keaton Mowery et al.
9Fine grain Cross-VM Attacks on Xen and VMware are possible!, Gorka Irazoqui Apecechea et al.
10http://arxiv.org/abs/1502.07373v1
11https://cryptojedi.org/crypto/index.shtml#aesbs

March 13, 2015 Open Crypto Audit Project Version 1.0

http://cr.yp.to/papers.html#cachetiming
http://www.tau.ac.il/~tromer/papers/cache-joc-20090619.pdf
http://cr.yp.to/mac/variability1.html
http://www.metzdowd.com/pipermail/cryptography/2005-June/008946.html
http://cseweb.ucsd.edu/~hovav/dist/aes_cache.pdf
http://eprint.iacr.org/2014/248.pdf
http://arxiv.org/abs/1502.07373v1
https://cryptojedi.org/crypto/index.shtml#aesbs

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 15 of 21

3. Keyfile mixing is not cryptographically sound

Class: Cryptography Severity: Low Difficulty: High

FINDING ID: CS-TC-3

TARGETS: Use of Keyfiles in TrueCrypt volume passwords

DESCRIPTION: TrueCrypt allows the use of Keyfiles that are included with the user's passphrase in the

derivation of the key used to unlock a volume. However, TrueCrypt does not mix the keyfile content

into the passphrase in a cryptographically sound manner.

A 64-byte buffer is constructed, initially zero, called the keypool that is used to hold the entropy

generated from the keyfiles. For each keyfile, a maximum of 1024 Kilobytes are read. A CRC (initially

0xFFFFFFFF and using the polynomial 0x04c11db7) is constructed, and for each byte in the file it is

updated. Each time the CRC is updated, its four bytes are individually added into the keypool, modulo

256, and advancing (so the first time it updates bytes 0-3, the second time 3-7, and so on, wrapping

around when it reaches 64.) The keypool output at the end of the first keyfile is used as the input

keypool for the second keyfile.

After all of the keyfiles are processed, each keypool byte is added (modulo 256) into the user's password

byte at that position. If the password is less than 64 bytes, the keypool byte in that position is used

directly.

The use of CRC in this way is not cryptographically sound. When mixing entropy from multiple

sources, an attackerwho controls one source of entropy should not be able to fully negate ormanipulate

the other sources, even if the attacker is aware of what the other data is.12 The use of a cryptographic

hash function is the correct way to mix entropy together – assuming the hash function is unbroken,

the best attack able to be mounted is a brute-force search for an input that, when combined with the

uncontrolled input, yields a desirable output.

In the current implementation an attacker is able to calculate the resulting keypool following the

uncontrolled keyfiles, and then (because of the use of CRC) calculate a keyfile that will entirely negate

the established pool. If an attacker manipulates the keypool to be all 0x00, it will be as if no keyfiles

were used at all.

Recommendation: Use a cryptographic hash function (possibly in anHMAC construction) to prevent

an attacker from manipulating a keyfile that could be used to negate the use of other keyfiles. When

using novel cryptographic techniques, clearly document the design of the approach in a separate

document and encourage review by the professional and academic community.

Note: After completing the review and documenting this bug, CS was alerted to its previous discovery

by the Ubuntu Privacy Remix Team in 2011.

12A previous example demonstrating this flaw is a backdoor in the RDRAND instruction on older Linux kernels.

March 13, 2015 Open Crypto Audit Project Version 1.0

https://www.privacy-cd.org/downloads/truecrypt_7.0a-analysis-en.pdf
https://www.privacy-cd.org/downloads/truecrypt_7.0a-analysis-en.pdf
https://defuse.ca/files2/poc/pocorgtfo03.pdf

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 16 of 21

4. Unauthenticated ciphertext in volume headers

Class: Cryptography Severity: Undetermined Difficulty: High

FINDING ID: CS-TC-4

TARGETS: TrueCrypt volume metadata stored in encrypted headers

DESCRIPTION: The TrueCrypt volume format consists of a small header containing metadata followed

by the contents of the volume. The header and volume contents are encrypted separately: the header

with a key derived from a user-supplied password, and the contents with a master key stored in the

encrypted header.

Cryptographic integrity and authenticity guarantees are beyond the scope of full-disk encryption.

This is because providing these checks would necessarily incur unacceptable storage and performance

penalties. Volume contents are accordingly encrypted without authentication.

In contrast, guaranteeing the integrity of the volume header is a tractable problem. Indeed, TrueCrypt

attempts to provide integrity by several means, including:

• A magic string ``TRUE'' at the beginning of the volume header.

• A CRC32 calculated over the master key material.

• A CRC32 calculated over the remainder of the volume header.

These checks do not constitute a truemessage authentication code (MAC). In a plaintext-only scenario,

it would be trivial for an attacker to forge a valid header. In practice, an attacker does not have such

fine-grained control due to the message-scrambling properties of the available encryption algorithms.

Nevertheless, existential forgeries are possible with approximately 232 queries.

The consequences of a successful header forgery are unclear. Because the header contains many fields

that drive program behavior, tampering with themmay cause TrueCrypt to enter unexpected or invalid

states.

Recommendation: Design a new system that uses the passphrase-derived user key to derive both an

encryption and an authentication key. Verify a MAC of header ciphertext before attempting decryp-

tion.

March 13, 2015 Open Crypto Audit Project Version 1.0

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 17 of 21

Appendices

A Random Number Generator

As detailed in finding 1 on page 13, under certain conditions the Random Number Generator on Win-

dows will not get cryptographically secure random data as an input to components such as master key

generation. If this occurs, the random pool will instead be fed by:

• 11 pointers to a variety of application structures. These are 32-bit values, but have significantly

more predictable structure than a random 32-bit value due to program layout.

• Process and thread IDs

• Milliseconds since Windows started

• Process startup time

• Cursor position

• Time of last input message

• Flags indicating what types of messages are in the queue

• The X & Y coordinate of the input caret and mouse cursor

• Statistics regarding the current memory usage13 and working set14 such as load (measured be-

tween 0 and 100), total physicalmemory, available virtualmemory, andminimumandmaximum

working size

• Creation, User and Kernel execution time of the current thread and process

• Network Management Data

• Physical hard drive performance statistics

After retrieving this data and adding it to the pool, it is mixed using a cryptographic hash function

such as RIPEMD, SHA-512, or Whirlpool.

13https://msdn.microsoft.com/en-us/library/windows/desktop/aa366772(v=vs.85).aspx
14https://msdn.microsoft.com/en-us/library/windows/desktop/ms683226(v=vs.85).aspx

March 13, 2015 Open Crypto Audit Project Version 1.0

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366772(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683226(v=vs.85).aspx

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 18 of 21

B Follow-up Review

Due to the time-boxed nature of this review, CS would like to highlight at least three areas of concern

that we hope the community (including ourselves as time allows) will continue to review carefully.

B.1 XTS Pointer Arithmetic

After reviewing the XTS implementations in TrueCrypt, CS feels that the EncryptBufferXTSNonPa

rallel and DecryptBufferXTSParallel functions deserve a closer study under different platform

conditions and endiannesses. In particular, CS feels that to the extent possible, formal verification for

pointer arithmetic and bounds checking would be the best approach to verify correct behavior.

B.2 Header Volume Parameters

The EncryptedAreaStart, EncryptedAreaLength, and VolumeSize parameters are critical to the safe

operation of TrueCrypt when decrypting and working with volumes. Although CS spent time validat-

ing the use of these parameters (including throughoutDriveFilter.c), debugging and following program

flow through these areas may yield examples of where Denial of Service or worse attacks are possible.

B.3 Program Flow

Much of the review was focused on functions and use of cryptography as individual discrete com-

ponents. The ``state machine'' governing when these lower-level functions are called, how errors are

handled, and under what circumstances a function may not be called should be reviewed in more

detail. While CS did look for errors of this sort, and did not identify any, the depth of review was

governed by time constraints and merits additional examination.

March 13, 2015 Open Crypto Audit Project Version 1.0

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 19 of 21

C XTS Mode of Disk Encryption

For more on this topic, see Code Execution In Spite of BitLocker on the CS blog.

CS feels that XTS, as a mode of disk encryption, does not provide sufficient authenticity in the face of

targeted ciphertext modification. While XTS is a disk encryption mode, and these modes commonly

rely on what is known as 'poor man's authentication', XTS still falls short of what should be state-of-

the-art.

The specific threat vector that is illustrated here begins with an attacker who has temporary access

to an inert encrypted volume, performing a targeted manipulation of the ciphertext, and returning

the volume to the user. The user would decrypt the drive at a later time, and the targeted ciphertext

manipulation will become a plaintext manipulation affecting a change on the user's unlocked, running

volume. This could be accomplished during a home or hotel room intrusion, a border crossing, or

similar situations.

This threat vector is not necessarily the least expensive or simplest avenue of attack for an attacker with

the same capabilities. While installing a software keylogger or backdoor in theOperating Systemwould

not be possible (assuming the OS resides on the encrypted volume in question), the attacker could

install a simple or sophisticated hardware backdoor ranging from a USB keylogger to a PCI-Express

card. The attacker may also be able to manipulate the BIOS (if UEFI Secure Boot is not enabled) or

stub bootloader in use by TrueCrypt. (The latter attack is somewhat mitigated in BitLocker by making

use of a Trusted Bootchain using a TPM chip, a feature that is not present in TrueCrypt.) Although

these hardware or ``evil maid'' attacks are possible and more likely, we would still prefer to have more

confidence in our cryptographic primitives in use.

To exploit the deficiency in XTS, an attacker would perform a targeted manipulation of a ciphertext

block that, due to disk layout and predictable Operating System installation, corrupts a chosen plain-

text block. Thismanipulationwill affect a single XTS block, and does not propagate to any surrounding

blocks, as illustrated below.

Figure 1: A targeted change to an XTS block

Awell chosen, targeted 16-byte corruptionwill result in a random selection of 3-5 assembly instructions

that could overwrite a jz or jnz branch. Chosen carefully, this would direct program flow down an

insecure branch of code. (There is a small risk of the randomassembly instructions corrupting program

or OS state.)

A stronger disk encryption mode would, at a minimum, corrupt a significantly greater portion of data

to increase the difficultly of exploitation. (This is the approach taken by the Elephant Diffuser in

older versions of BitLocker.) But even this approach is relying on coincidence and hope as a security

mechanism. Disk encryption as a field of study in cryptography deserves more attention to address

these shortcomings.

March 13, 2015 Open Crypto Audit Project Version 1.0

http://cryptoservices.github.io/fde/2014/12/08/code-execution-in-spite-of-bitlocker.html

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 20 of 21

D Defensive Coding

In several locations, CS identified if and switch statements that have default fall-throughs that may

result in incorrect program behavior. These examples contrast with other statements in the codebase

that have good undefined behavior detection, as shown here:

switch (cipher)

{

case AES:

//...

break;

case SERPENT:

serpent_set_key (key, CipherGetKeySize(SERPENT) * 8, ks);

break;

case TWOFISH:

twofish_set_key ((TwofishInstance *)ks, (const u4byte *)key, CipherGetKeySize(

TWOFISH) * 8);

break;

//...

default:

// Unknown/wrong cipher ID

return ERR_CIPHER_INIT_FAILURE;

}

Listing 2: CipherInit in Crypto.c

As an example, while CipherInit currently only returns two error values and one success value, a

more defensive programming style would enumerate all expected return values in the below switch

statement, and throw an error when a new one is encountered.

switch (CipherInit (c, key, ks))

{

case ERR_CIPHER_INIT_FAILURE:

return ERR_CIPHER_INIT_FAILURE;

case ERR_CIPHER_INIT_WEAK_KEY:

retVal = ERR_CIPHER_INIT_WEAK_KEY; // Non-fatal error

break;

}

Listing 3: EAInit in Crypto.c

March 13, 2015 Open Crypto Audit Project Version 1.0

Cryptography Services Final Report — Open Crypto Audit Project TrueCrypt Page 21 of 21

And in some cases there are nested try/catch blocks with no explanation of why exceptionsmay occur

or why it is safe to continue execution if they do.

try

{

GetBootEncryptionAlgorithmNameRequest request;

CallDriver (TC_IOCTL_GET_BOOT_ENCRYPTION_ALGORITHM_NAME, NULL, 0, &request, sizeof

(request));

if (_stricmp (request.BootEncryptionAlgorithmName, "AES") == 0)

ea = AES;

else if (_stricmp (request.BootEncryptionAlgorithmName, "Serpent") == 0)

ea = SERPENT;

else if (_stricmp (request.BootEncryptionAlgorithmName, "Twofish") == 0)

ea = TWOFISH;

}

catch (...)

{

try

{

VOLUME_PROPERTIES_STRUCT properties;

GetVolumeProperties (&properties);

ea = properties.ea;

}

catch (...) { }

}

Listing 4: CreateBootLoaderInMemory in Bootencryption.cpp

CS recommends that if/elseif/else and switch statements have a default case that throws an error

if unexpected input is given. Similarly when exceptions are expected to occur, handle only the expected,

narrowly defined exception to correctly continue execution and document why the ``exceptional'' situ-

ation is not exceptional enough to corrupt program state.

March 13, 2015 Open Crypto Audit Project Version 1.0

	Executive Summary
	CS Risk Summary
	Project Summary
	Findings Summary
	Recommendations Summary

	Engagement Structure
	Internal and External Teams
	Project Goals and Scope

	Detailed Findings
	Classifications
	Vulnerabilities
	Detailed Vulnerability List

	Appendices
	Random Number Generator
	Follow-up Review
	XTS Pointer Arithmetic
	Header Volume Parameters
	Program Flow

	XTS Mode of Disk Encryption
	Defensive Coding

